# MOD

## Purpose:

Determine the remainder from a division.

## Syntax:

MOD(num, den)

 num - A scalar, series, or table. The numerator value. den - A scalar, series, or table. The denominator value.

## Returns:

A scalar, series, or table.

mod(5,3)

returns 2.

## Example:

W1: 1..10

W2: ravel(W1,5)

mod(W1,5)

returns the series: {1, 2, 3, 4, 0, 1, 2, 3, 4, 0}

## Example:

mod(W2,5)

returns the 5x2 array:

{{1, 1},

{2, 2},

{3, 3},

{4, 4},

{0, 0})

## Example:

mod(12.3, -3) == –2.7

rem(12.3, -3) ==  0.3

mod(12.3, 0)  ==  12.3

## Example:

mod(5.125, int(5.125))

returns 0.125.

## Example:

W1: rand(5, 1) * 10

W2: mod(w1, int(w1))

Because W1 is positive, W2 contains the fractional part of W1.

## Remarks:

mod(a, b) is equivalent to a % b

mod(a, b) has the same sign as b and rem(a, b) has the same sign as a. Both are equal if the inputs have the same sign, but differ by b if the signs differ, i.e.:

mod(-a, b) == rem(-a, b) + b

MOD works for scalars, series, and tables.