Evaluates Ei(z), the Cauchy Principal Value Exponential Integral.
EXPINTEI(z)
z |
- |
A scalar or series, the integration limit. |
A scalar or series, the value of Ei(z), the integration of
expintei(1)
returns 1.895118 the value of:
expintei(0)
returns -inf.
expintei(1 + i)
returns 1.764626 + 2.387770i.
expintei(-5..0.01..5);
xlabel("x");ylabel("Ei(x)");label("Ei Integral");
returns 1001 samples of Ei(x) with integration limits from
W1: 0.01..0.01..10
W2: expintei(W1)
W3: integ(exp(w1) / w1)
W2 contains the Cauchy principal value exponential integral and W3 computes an approximation by directly integrating
The Cauchy principal exponential integral,
The input z may be complex. The function is multi-valued with a branch cut along the negative real axis.
For positive real z:
where E1(z) is the generalized exponential integral implemented by EXPINT.
Ei(z) is real for real z.
Ei(0) = -∞